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A strong rhombohedral distortion takes place in the TbCo2 Laves compound below its 
magnetic ordering temperature. The analysis of the low-temperature powder diffraction 
spectra enabled the determination of a giant magnetostriction coefficient, ;kl 1 ~, of the 
order of 3 x 10 -3 at 80 K. 

1. Introduction 
The rare-earth iron Laves phase compounds display 
a variety of interesting magnetoeleastic properties. 
Particularly noteworthy is the giant magneto- 
striction which has been observed in TbFe2 [1,2]. 
In this compound the easy axis of magnetization is 
parallel to the [1 1 1] direction and klll,  the 
magnetostriction coefficient, is positive. Dwight 
and Kimball [3] reported that in the magnetically 
ordered state the allegedly cubic TbFe2 compound 
actually displays a pronounced rhombohedral 
distortion. Similar rhombohedral distortions were 
observed by Barbara et  al. [4] in the RFe2 com- 
pounds, R = Sin, Tm which, like TbFe2, have at 
room temperature an [1 1 1] easy axis of magnet- 
ization. Cullen and Clark [5] have recently shown 
that in RFe2 Laves compounds having spontaneous 
axis of magnetization parallel to the [1 1 1] direc- 
tion, an internal rhombohedral distortion takes 
place. This distortion is coupled to the external 
strain and leads to the giant observed magneto- 
striction. Contrary to the above, the R = Dy, Ho 
Laves compounds possess easy axes of magnetiz- 
ation parallel to the [1 0 0] direction. Cullen and 
Clark showed that there was no corresponding 
structural distortion associated with this direction 
and, therefore, the latter compounds maintained 
their cubic symmetry. 

The single rare-earth ion magnetic anisotropy 

gives a fully consistent account of the bulk magnetic 
and magnetoelastic properties of the RFe; Laves 
phases. The relatively high magnetic ordering tem- 
peratures (> 600K) are ascribed to the strong 
Fe-Fe exchange interactions. The isostructural 
RCo2 compounds have much lower ordering 
temperatures, attributed to the weaker R-Co 
interactions which are the dominant ones in these 
compounds. Nevertheless, the magnetic anisotropy 
and the magnetoelastic properties are still deter- 
mined by the single rare-earth ion anisotropy as 
shown, for instance, by M6ssbauer effect measure- 
ments [61. The objective of the present work was 
to study possible structural distortions in the 
magnetically ordered RCo2 compounds. In this 
paper we report the presence of a strong rhombo- 
hedral distortion in the TbCo2 Laves phase. 

2. Experimental details and procedures 
The Laves compound TbCo2 was prepared by arc- 
melting 99.9% pure Tb and 99.99% Co lumps under 
a gettered argon atmosphere. TbCo2 melts non- 
congruently at ~ 1180 ~ C [7], lengthy anneals are, 
therefore, necessary to ensure single-phase homo- 
geneous samples. The arc-melted buttons were 
wrapped in thin Ta foils and annealed for 1 week 
at l l00~ in evacuated quartz capsules. This 
anneal yielded a practically single-phase sample as 
shown by metallographic and electron microprobe 
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Figure 1 Diffraction profile of the cubic (6 20) reflection 
taken at 120K. At this temperature the reflection splits 
into the two (1 2 8) and (1 34) reflections (the Miller 
indices correspond to the hexagonal representation of the 
unit cell). Each such reflection in itself is a doublet due to 
the K% and Ka 2 splitting. The dashed curve represents 
the experimental profile and the full curve, the least-squares 
computer-fitted profile. 

analysis. At room temperature, the measured lattice 
parameter o f  TbCo2 was 7.208 -+ 0.002 )k, in 
good agreement with results reported in the 
literature. 

Below room temperature, the diffraction spectra 
were obtained using a low-temperature attachment 
(Air Products and Chemicals) in conjunction with 
a Philips diffractometer. Diffraction spectra of  the 
powdered specimen were taken at a series of  tem- 
peratures, stabilized within 1 K, in the 80 to 300 K 
range. The low-temperature attachment was 
calibrated using high-purity silicon powder. 

Visual inspection of  the diffraction patterns 
obtained below the magnetic ordering temperature 
of  TbCo2, Tc = 240 K, showed the presence of  a 
strong structural distortion. Most diffraction peaks 
of  the f c c structure o f  TbCo2 broaden or split into 
two or more peaks (Fig. 1). The distortion was 
ascribed to the transformation - similar to that 
taking place in TbF% - from the initial C-15 cubic 
structure into a rhombohedral structure. The 
diffraction pattern of  the rhombohedral structure 
was interpreted using a computer program which 
generated line positions and intensities. It used as 
input the general positions of  the corresponding 
space g r o u p - R 3 m ,  in the present c a s e - t h e  
special positions of  the atoms in the structure type 
and approximate lattice parameters. The intensities 
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T A B L E I Calculated intensities of the reflections of 
the rhombohedral unit cell of TbCo 2 used for the determi- 
nation of the lattice parameters and the magnetostriction 
coefficient 

Original C-15 cubic 
structure 

Rhombohedral structure in its 
hexagonal representation. 
Space group R3m 

Indices Indices Intensities 
hkl  hk l  

440 20 8 22.8 
22 0 22.7 

620 12 8 11.6 
13 4 11.5 

533 0111 5.8 
13 5 11.5 
04 1 5.8 

64 2 1 1 11 8.9 
31 8 8.9 
32 4 8.9 
41 0 8.9 

of  the individual reflections were computed accord- 
ing to p IFPLP where p is the multiplicity, F,  the 
structure factor and LP, the combined Loren t z -  
polarization factor. The diffraction profiles of  the 
peaks listed in Table I were used as experimental 
data for least-square fitting to computer-generated 
diffraction profiles. In the course of  this analysis, 
four free parameters were used, namely aH and 
CH, the lattice constants o f  the rhombohedral unit 
cell in the hexagonal representation, a normaliz- 
ation factor and F, the width of  the diffraction 
line for which a Gaussian profile was assumed. 

3.  Discussion 
The temperature dependence of  the lattice para- 
meters of  the hexagonal unit cell of  TbCo2 is 
plotted in Fig. 2. The lattice parameters at each 
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Figure 2 Temperature dependence of the lattice parameters 
of the hexagonal unit cell of TbCo 2 . 
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temperature were deduced from the least-square 
fitting of the corresponding diffraction spectrum. 
Above the Curie temperature, at approximately 
240K, the c/a ratio of the hexagonal unit cell 
equals x/6, corresponding to the f c c unit cell in 
its hexagonal representation. The bulk expansion 
coefficient, calculated from the temperature 
variation of the lattice parameters increases 
abruptly above the Curie temperature giving rise 
to a spontaneous volume striction effect in the 
magnetically ordered state. The magnitude of this 
effect - 6.8 x 10 .3 at 80K - was estimated by 
comparing the unit cell volume determined exper- 
imentally with that calculated using extrapolated 
data from the paramagnetic region. The results are 
in good agreement with those reported by Minakata 
et al. [8] who used dilatometric techniques. 

Careful analysis of the diffraction profiles of 
the rhombohedrally distorted cubic structure 
allows the straightforward determination of ~k 1 11, 
the magnetostriction coefficient. It can be shown 
[9] that the splitting of some of the cubic reflec- 
tions into doublets can be related conveniently to 
)k l l l~  In particular, for (h h h) and (h h 0)-type 
cubic reflections, the splitting Ad/d equals 4/3X111 
and kl 1 l, respectively. The experimental data thus 
permitted the determination of X~11 at various 
temperatures in the 80 to 300 K range. 

According to the semi-classical model of Callen 
and CaUen [10], the temperature dependence of 
the normalized magnetostriction can be expressed 

) t l l i ( ~ j / ) t l i l ( O  ) = ]s/2[-~-l(ntl/mo)] (1)  

where 15/2 is the hyperbolic reduced Bessel func- 
tion,-C-~ -1 , the inverse Langevin function and 
rn/mo, the reduced magnetization which was 
estimated from Burzo's [11] data, According to 

Figure 3 Temperature dependence of the normalized 
magnetostrietion coefficient. The value measured at the 
lowest temperature (80 K) was plotted to fit the Callen- 
Callen expression (Equation 1). 

Equation 1 at 80K, Xlll(80)/X111(0) = 0.78. 
Using this factor and assuming that up to 80K, 
the temperature dependence of Xlll follows 
Equation 1, X1 11 (0 )  = 5 .2  X 10 -3 . The continuous 
curve in Fig. 3 represents Equation 1. The exper- 
imentally determined values were normalized on 
the basis of the T = 80 K value of X~ ~ 1. The other 
points for T > 80 lie slightly above the continuous 
curve. Normalizing the experimental values accord- 
ing to a XI~ ,  determined at a temperature other 
than 80 K, would have yielded higher values of 
Xlll(0) in the range 5.1 x 10 -s to 6.8 x 10 -3. On 
the other hand, the experimental points in Fig. 3 
seem to extrapolate, if one ignores the theoretical 
curve, to values slightly lower than 5.1 x 10 -3. 

It has been established [9] that in the isostruc- 
tural RFe2 compounds X~a~ >> Xloo. Assuming 
that a similar situation prevails in TbCo2 and since 
for polycrystalline samples the saturation magneto- 
striction ks = 3/SXlit ,  we can deduce that ks---~ 
3.1 x 10 -3 at OK. 

Lee and Pourarian [12] measured the magneto- 
striction coefficients of several RCo2 Laves com- 
pounds using strain gauge techniques. The results 
of these bulk, macroscopic measurements were 
presented in the form of Xt = Xt(T) curves, where 
)k t = )kll -- 2t• and )tll , 3,• are the magnetostrictions 
measured in parallel and perpendicularly to the 
applied magnetic field, respectively. Xt represents 
the volume conserving, anisotropic strain. At 
T = 0 K and a magnetic field of  2.5 T, the values 
obtained by Lee and Pourarian extrapolate to 
5.5 x 10 -a . Under the assumption that we are not 
far from saturation at 2.5 T, Xt ~ 3/2ks and, there- 
fore, ks --~ 3.6 x 10 -3 , in reasonable accord with 
the results obtained in the present work. 

The giant magnetostriction observed for TbCo2 
below its Curie temperature is similar in magnitude 
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to that previously reported for RFe 2 compounds 

and TbFe2,  in particular [1]. Our finding, thus, 
lends further support to the observation that the 

single rare-earth ion anisotropy is the predominant 

factor which determines the magnetoelastic proper- 

ties of the rare-earth transition metal compounds. 
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